Anylay

AnyViewPlus 通用数据采集软件用户手册

V1.4

感谢您选用银河电气通用数据采集软件

本手册为湖南银河电气有限公司产品 AnyViewPlus 通用数据采集软件用户使用说明,本手册为用户提供产品安装调试、操作使用及日常维护的有关注意事项,在安装、使用前请仔细阅读。本手册随产品一起提供,请妥善保管、以备查阅和维护使用。

声明

我们非常认真的整理此手册,但我们对本手册的内容不保证完全正确。因为我们的产品一直在持续的改良及更新,故我方保留随时修改本手册的内容而不另行通知的权利。

同时我们对不正确使用本手册所包含内容而导致的直接、间接、有意、无意的损坏及隐患 概不负责。

目 录

1. AnyVie	ewPlus 通用数据采集系统概述	. 1
2.安装环	「境要求	. 2
2.1.	硬件环境	. 2
2.2.	软件环境	2
3.功能简	5介	2
4. AnyVie	ewPlus 通用数据采集软件操作	. 3
4.1.	软件安装步骤	3
4.2.	运行 AnyViewPlus 通用数据采集软件	3
4.3.	通道设置功能	5
	4.3.1. 通讯设置	5
	4.3.2. 档位设置	6
	4.3.3. 数据存储设置	6
	4.3.4. 物理通道设置	8
	4.3.5. 数学通道设置	8
	4.3.6. 自定义特征值	10
4.4.	系统状态显示	12
4.5.	仪表显示	12
	4.5.1. 添加仪表	13
	4.5.2. 删除仪表	13
	4.5.3. 数据记录与导出	13
4.6.	实时波形	14
	4.6.1. 波形操作	14
4.7.	谐波分析	16
	4.7.1. 选择分析对象	16
	4.7.2. 设置分析点数	16
	4.7.3. 窗函数类型	17
	4.7.4. 幅值类型	17
	4.7.5. 覆盖率	17
	4.7.6. 柱状图显示	17
	4.7.7. 列表显示及导出	17
	4.7.8. 相关参量的计算	17

4.8.	趋势曲线	19
	4.8.1. 窗口大小	19
	4.8.2. 背景颜色	19
	4.8.3. 全屏保存	20
	4.8.4. 显示对象选择	20
	4.8.5. 显示窗口操作	21
4.9.	电源质量分析	22
	4.9.1. 分析窗口名称	22
	4.9.2. 分析对象选择	22
	4.9.3. 数据保存	22
	4.9.4. 三相矢量图	23
	4.9.5. 相关计算参量	23
4.10	D. 数据回放	24
	4.10.1. 导入数据	24
	4.10.2. 导出数据	24
	4.10.3. 清除数据	25
	4.10.4. 波形控制	25
	4.10.5. 波形游标	25
	4.10.6. 数字滤波器	25
5.质保与	5售后服务条款	26
5.1.	产品保修	26
5.2.	保修期后的服务承诺	26
5.3.	售后服务	26
5.4.	响应时间	26
5.5.	售后服务收费标准	27

1. AnyViewPlus 通用数据采集系统概述

AnyViewPlus 通用数据采集系统主要由银河电气的 WP4000 变频功率分析仪、DAQ 多通 道数据采集仪、EV 驱动综合测试仪、DH2000 数字主机等设备和通用数据采集软件构成,用 户通过简易配置,能快速构建成一套多种动静态状态监测、数据分析与管理的实时数采系统。。

WP4000 变频功率分析仪等硬件设备完成数据的高速采样,并通过以太网实时上传所有通道的波形通道数据和特征值数据。

AnyViewPlus 通用数据采集软件通过以太网获取局域网内 1 台或多台硬件设备的测试数 据,并进行多种信号的处理与运算,完成常规数值显示、波形显示等操作,最后可生成分析报告,实现被监控对象的质量分析等。通用数据采集软件主要包含仪表显示、实时波形显示、趋势曲线显示、谐波分析、电源质量分析、数字滤波器、数据保存与导出等功能。

系统构成原理示意如下图 1 所示:

图 1 AnyViewPlus 通用数据采集系统构成原理示意

2. 安装环境要求

2.1. 硬件环境

- ➢ CPU: Intel I3 及以上处理器;
- ▶ 内存:DDRIII 4G以上内存;
- ▶ 显卡:推荐采用独立显卡,2G或以上显存;
- ▶ 硬盘:推荐采用SSD固态硬盘(写入速度1.5GB/s)。

2.2. 软件环境

- ▶ 操作系统: Windows 64 Bit/OSX/Linux 系列操作系统;
- ➤ 数据库:Mysql5.0;
- ▶ 开发平台:QT5.6.1;
- ➤ 运行组件:.net framwork 2.0。

3. 功能简介

- 仪表显示:支持特征值的虚拟仪表盘显示,支持自定义表达式运算,自定义数据记录 方式、数据导出;
- 实时波形显示:同时支持最多9个通道的实时波形同步显示,支持在线谐波分析,谐 波参数计算、谐波频谱显示与导出;
- ▶ 趋势曲线显示:支持多特征值的趋势曲线同步显示,支持多通道Y/t图、XY图显示;
- 电源质量分析:可对选定的 1~6 个相关参量进行矢量分析、绘制矢量关系图,实时运算电源质量的相关特征量;
- > 支持声光报警控制、报警触发类型及阈值设置;
- 数据存储与回放:支持实时波形数据和特征值数据的实时存储、回放与离线分析、游标运算、数据导出;
- 多种窗函数选择,多种数字滤波器选择。

4. AnyViewPlus 通用数据采集软件操作

4.1. **软件安装步骤**

(1) 安装 VS2013 开发插件

双击运行软件安装包文件夹下的"vcredist_x86.exe"和"vcredist_x64.exe"程序, 按照提示信息进行开发插件的安装。

(2) 开发组件注册

双击运行软件安装包文件夹下的"COMInstall.exe"程序,进行组件注册,出现下图 2 所示界面表明 COM 组件注册成功,否则无法正常使用自定义特征值功能。

图 2 COM 组件注册成功

4.2. 运行 AnyViewPlus 通用数据采集软件

运行软件前请确保硬件设备正确连接(支持银河电气DPA4和DPA5两种版本的通讯底层),

与安装 AnyViewPlus 通用数据采集软件的上位机处于同一局域网内,并确保上位机已连接厂

家提供的 USB 加密狗。

AnyViewPlus 通用数据采集软件为绿色免安装软件,双击安装包文件夹根目录下的 "AnyViewPlus 通用数据采集软件.exe"图标,即可运行软件。

3

第一次运行软件时,需要选择软件使用的语言包(软件支持简体中文和英文两种语言),

如图 3 所示,软件默认选择简体中文。

图 3 程序语言选择

软件运行初始界面如下图 4 所示:

🚔 通用数据采集系统	_	_	_	-	_		_
\bigcirc			\bigcirc	((\blacktriangleright)
仪表显示	实时波形	趋势曲线	电源质量分析	ġ	数据回放	通道设置	开始采集
第一页 💌 💽							
通道0 ▼ H01 ▼ 0.21791 mA	通過4 ▼ AVG ▼ 0.82493 mA	通道6 ▼ AVG ▼ 0.39721 mA	■8 ▼ AVG ▼ 18.6472 mA 21	▼ AVG ▼ 1.2736 mA	18.6472 mA	通過9 ▼ AVG ▼ 37.0579 mA	通道10 ▼ AVG ▼ 6.98614 mA
通道5 ▼ H01 ▼ 0.84686 mA	^{通道5} ▼ AVG ▼ 0.84684 mA	通道3 ▼ AVG ▼ 通道 42.6297 mA 4	≝3 ▼ AVG ▼ 播通0 12.6297 mA -2	• MIN • 2.5042 A	通道8 ▼ MAX ▼ 1.05371 A	通道4 ▼ MIN ▼ -2.2547 A	通道0 ▼ THD ▼ 813431 %
<u>зёёо</u> ▼ но1 ▼ 2.51460 А	通道0 ▼ AVG ▼ 0.70286 mA	通道4 ▼ AVG ▼ 通道 0.82493 mA 4	≊3 ▼ AVG ▼ #2.6297 mA -2	• MIN • 2.5042 A	通道8 ▼ MAX ▼ 1.05371 A	通道4 ▼ MIN ▼ -2.2547 A	通道0 ▼ THD ▼ 813431 %
通道0 ▼ H01 ▼ 0.21791 mA	通道4 ▼ AVG ▼ 0.82493 mA	通過6 ▼ AVG ▼ 通過 0.39721 mA 1	18 ▼ AVG ▼ 18.6472 mA 21	▼ AVG ▼ 1.2736 mA	週譜6 ▼ AVG ▼ 18.6472 mA	通過9 ▼ AVG ▼ 37.0579 mA	通道10 ▼ AVG ▼ 6.98614 mA
通道5 ▼ H01 ▼ 0.84686 mA	通道5 ▼ AVG ▼ 0.84684 mA	通道3 ▼ AVG ▼ 通道 42.6297 mA 4	a3 ▼ AVG ▼ 通過0 12.6297 mA -2	▼ MIN ▼ 2.5042 A	+ 添加		
							K 🔇 📎 N 🕬
· 记录时间 仪表1	仪表2 仪表3 仪表4	4 仪表5 仪表6 仪表	7 仪表8 仪表9	仪表10 仪表11	(夜表12) (夜表13) ((一) (() () () () () () () () ()	2表14 位表15 位表16	(
1 14:41:40 0.18167 0	18167 0.18167 0.18167 0.18167		67 0.18167 0.18167	0.18167 0.18167	0.18167 0.18167 0	18167 0.18167 0.1816 第0日01: 第第0日01: 第第0日01:	7 0.18167 0.18167 11: 通道0月01: 通道0月01:
2 14:41:40 0.18167 0 递通05-01: 通道	18167 0.18167 0.1816 満0から1: 通道のから1: 通道のから		67 0.18167 0.18167 401: 通道04-01: 通道04-01: 通道04-01: 通道04-01:	0.18167 0.18167 ●通05-01: 通道05-01:	0.18167 0.18167 0 通道0H01: 通道0H01: 通	.18167 0.18167 0.1816 商0月01: 通道0月01: 通道0月0	7 0.18167 0.18167
3 14:41:40 0.18167 0 通過0/H01: 通道	18167 0.18167 0.1816 800-01: 講道00-01: 講道00-01	7 0.18167 0.18167 0.1816	67 0.18167 0.18167 401: 通過0/H01: 通過0/H01: 通	0.18167 0.18167	0.18167 0.18167 0 通過0/H01: 通過0/H01: 通	18167 0.18167 0.1816 約0月01: 講道0月01: 講道0月0	7 0.18167 0.18167
4 14:41:40 0.18167 0	.18167 0.18167 0.1816	7 0.18167 0.18167 0.181	67 0.18167 0.18167	0.18167 0.18167	0.18167 0.18167 0	.18167 0.18167 0.1816	7 0.18167 0.18167

图 4 AnyViewPlus 通用数据采集软件初始运行界面

AnyViewPlus 通用数据采集软件主要包含通道设置、仪表显示、实时波形显示、在线谐波分析、趋势曲线、电源质量分析、数据回放等七大功能,其中谐波分析功能包含于实时波形界面中。

4.3. 通道设置功能

通道设置界面用于完成通用数据采集软件与 WP4000 变频功率分析仪等硬件设备建立网络通讯、设置数据存储对象及路径等,主要包含设备通讯设置、档位设置、数据存储设置、物理通道设置、数学通道设置、自定义特征值、分布式数字主机设置。通道设置界面如下图 5 所示:

🍦 通用数据采集系统	设备0未连接 设备1未连接 设备2未连接	数字主站未连接				×
(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		(新) 趋势曲线	○ 市源质量分析	通 数据回放	() 通道设置	● 开始采集
 ● 停止采集后保存设置 会話 自定义待征信 请在此约迭您需要保存的成形和特化 ● 分析仪1 ● 分析仪2 ● 分析仪2 ● 数字主机 	迎重書道: 迎重書道: 一個書道: 「保存」 一個快二 一個快三 一個快三 一個快三 一個快三	会新议 设計 (以 い) ()	国 下位机读曰: 17011 4-DPA5\DataCollected 新选择 保存设置			
	2件					
🔲 点击开始采集后不允许修改通道	或特征值选项					

图5通道设置主界面

4.3.1. 通讯设置

以硬件设备为 WP4000 变频功率分析仪为例,点击软件界面左边的"分析仪 0",右边出现设置界面,该设置只对本台功率分析仪有效。用户可在设备名称一栏自定义该设备的名称。 在网络设置部分,设置目标 WP4000 变频功率分析仪的 IP 地址和通讯端口号(系统默认为 17011), IP 地址不能设置为空或重复,全部设置完毕后,点击"保存设置"按钮,使设置生 效。完成所有设置后,点击"开始采集"按钮,软件开始与硬件设备进行数据通讯。

4.3.2. 档位设置

档位设置功能主要用于手动控制设备档位,默认状态下,设备进行自动档位切换,即仪器 主界面显示 D0~D7。在特定应用场合,可使用档位设置功能,将任意通道的档位由自动切换 为手动模式。

端口号固定为 57088,选择相应模块的档位后,点击"设置"按钮,进行模式切换,当仪器主界面相应通道的档位显示 MO~M7时,表明设置成功。点击"恢复自动挡"按钮,即恢复自动档位模式。

图6 档位设置界面

4.3.3. 数据存储设置

点击软件界面左边的"分析仪 0",软件以树形结构展示该设备下的所有数据,每台 WP4000 变频功率分析仪包含 32 个通道数据,其中前 12 个通道固定为物理通道,用户无法 编辑,后 20 个通道为数学通道,用户可以自定义通道属性,即可通过 12 个物理通道的数据 进行四则运算,衍生出其它属性的通道数据,简称数学通道。每个通道包含一个实时波形数据 和 9 个特征值数据,特征值名称及含义如下列表 1 所示:

表1:特征值名称及含义

序号	特征值名称	含义	单位
1	AVG	算术平均值	A/V
2	H01	基波有效值	A/V
3	RMS	真有效值	A/V
4	MEAN	校准平均值	A/V

AnyViewPlus 通用数据采集软件用户手册

5	MAX	最大值	A/V
6	MIN	最小值	A/V
7	THD	总谐波失真	%
8	F	信号基波频率	Hz
9	PHASE	相位	o

根据存储需要,勾选对应通道实时波形和特征值数据前面的复选框,选定存储对象,软件 默认状态为不保存,在保存设置中对文件的存储路径进行设定,全部设置完毕后,点击"保存 设置"按钮,使设置生效。

当点击"开始采集"按钮后,勾选的实时波形数据和特征值数据开始以*.wav和*.ftc格式 的文件保存于设定路径的文件夹下,其中波形数据命名规则为:"设备名_通道名_开始采集时 间.wav",特征值数据命名规则为:"设备名_通道名_特征值名_开始采集时间.ftc",分布式子 站数据的命名规则为:"设备名_子站名_通道名_开始采集时间.ftc"。

停止采集后保存设置:如该选项未勾选,则点击"停止采集"按钮后,软件会清空先前所 勾选的所有存储对象,如勾选,则维持上一次存储设置方案。

♂ 停止采集后保存设置	~设置
	设备名称: 分析仪0 设备重置
请在此勾选您需要保存的波形和特征值通道:	
▶ □ 分析仪0	下位机IP: 192.168.1.10 下位机端口: 17011
▶ 🔲 电流0-0	
🛃 实时波形	
▶ ■ 特征值	文件保存通径: nglin\Desktop\DataCollection-V2.5.4-DPA5\DataCollected
AVG	
H01	· · · · · · · · · · · · · · · · · · ·
RMS	模块一:自动挡 → 模块四:自动挡 →
MEAN	模块二: 自动挡 → 模块五: 自动挡 →
MIN	
	· · · · · · · · · · · · · · · · · · ·
PHASE	
▼ ■ 电压0-0	
▼ ■ 电流0-1	

图7数据存储设置

7

4.3.4. 物理通道设置

物理通道设置的对象是前 12 个通道,点击"分析仪"树形结构下任一通道,右边出现实时波形设置界面,用户可在"通道名"部分自定义该通道实时波形的名称。

在"变比设置"部分,通过改变原始范围和转换后范围来设置实时波形的变比,软件默认 变比为 1。如该通道为电流测试通道,外接电流传感器一次侧输入信号为 0~2000A,二次侧输 出信号为 0~800mA,为使软件显示值为一次侧的实际电流值,则将"原始范围"设置为 0~2000, 单位设置为 A,将"转换后范围"设置为 0~0.8,单位设置为 A;

在"报警方式"和"阈值"部分设置报警控制的相关参数,一旦通道原始数据触发报警, 软件会提示报警信息并形成记录。全部设置完毕后,点击"保存设置"按钮,使设置生效。

🛃 停止	采集后保存设置						
设备	自定义特征值		┌─基本设置──		_		
请在此	勾选您需要保存的		通道名:	电流0-0			
•	分析仪0		_ 特征值变比 				
►	📃 电流0-0		转换后范围	0	<mark>0.8</mark>	单位:	А
	📃 实时波	形	 原始范围:	0	2000		
	▶ 📃 特征值	i i					
	AV	′G	 报警方式:	预触发		阈值:	100
	- H0)1					原方沿署
		IS					THE

图8 实时波形设置

4.3.5. **数学通道设置**

数学通道设置的对象是后 20 个通道,数学通道支持波形数据的四则运算。在进行数学通 道设置前,可以通过"设备重置"按钮,刷新当前数学通道配置情况,预设信息显示与通道设 置界面左下角。

数学通道设置及预设信息如下图 9 所示:

银河电气 AnyViewPlus 通用数据采集软件用户手册 🛃 停止采集后保存设置 基本设置-设备 自定义特征值 通道名: 通道0-13 请在此勾选您需要保存的波形和特征值通道: 特征值变比-■ 电压0-4 转换后范围 -5 5 单位: 电流0-5 电压0-5 原始范围: -5 5 📃 通道0-12 • 🧾 通道0-13 - 阈值: 100 报警方式: 预触发 🔲 通道0-14 数学通道设置 [电流0-0]*[电压0-1]*1.00 保存设置 🔲 通道0-15

图9 数学通道设置-1

点击"数学通道设置按钮", 弹出如下图 10 设置界面

WaveformCalculationDlg										
当前通道:	通道0-13 清除设置		通道名	同步源						
=\+		1	电流0-0	未设置						
	[电流0-0]^[电压0-1]^1.0	2	电压0-0	未设置						
		3	电流0-1	未设置	L					
		4	电压0-1	未设置						
清好昭以下村	3.书设罟物今诵道。	5	电流0-2	未设置						
[通道0]*[通〕	1]*1.0+[通道2]*[通道3]*-1.1+[通道4]*[通道5]*1.2+[通道6]*[通道7]*-1.3	6	电压0-2	未设置						
		7	电流0-3	未设置						
		8	电压0-3	未设置						
		9	电流0-4	未设置						
		10	电压0-4	未设置	L					
	4 5 6 -	11	电流0-5	未设置						
	7 8 9 ×	12	电压0-5	未设置	•					
	c 0 . ÷		确	定						

图 10 数学通道设置-2

在界面右侧选择相应的运算通道,通过设置界面上的数字按键以及四则运算符,设置格式请参照提示信息,完成当前通道的算法编辑。设置完成后,点击"确定"按钮生效。点击"清

除设置"按钮,即清除该通道的算法表达式。

4.3.6. 自定义特征值

在特征值设置界面,用户可通过已提供的特征值数据结合软件提供的基本运算符与函数, 产生新的特征值,以适应各种不同工况条件下对特征值的需求。如利用电压通道的有效值、电 流通道的有效值及它们的相位差来计算功率,功率为新的特征值。

"自定义特征值"一栏会显示所有新生成的特征值名称列表,用户可以进行新建、修改、 删除和保存等操作,新生成的特征值在仪表显示、实时波形、趋势曲线等界面都可以调用。

🛃 停	止采集后保存设置			-基本设置——							
设备	自定义特征值			文件保存路径							请洗择
	名称			_ 白宗以供须	信使提						
	基波无功功率Q6_H01	Sqrt(Pow(Sqrt(3)*[W10_H01]		表达式名称:	电压三相不	平衡度Eu1	▽ 单位:		改名	删除	新建
	基波无功功率Q7_H01	Sqrt(Pow(Sqrt(3)*[W12_H01]			([W10_M/	X]-[W10_M	IN])/[W10_/	4VG]	*100		
	机械功率1(kW)	(2*[S1F2]*1)*(0.06*[S1F1]*3.1						≢ _	数设置		
	机械功率2(kW)	(2*[S2F2]*1)*(0.06*[S2F1]*3.1						通道	<u> </u>		
	总波形阻抗 Z1	[W0_RMS]/[W1_RMS]							参数名称	特征值类型	2
	总波形阻抗 Z2	[W2_RMS]/[W3_RMS]						1	算术平均值	AVG	
	总波形阻抗 Z3	[W4_RMS]/[W5_RMS]			5	0		2	基波值	H01	_
	总波形阻抗 Z4	[W6_RMS]/[W7_RMS]						3	方均根值	RMS	
	总波形阻抗 Z5	[W8_RMS]/[W9_RMS]		7	8	9	×	4	校准平均值	MEAN	
	总波形阻抗 Z6	[W10_RMS]/[W11_RMS]						5	最大值	MAX	
	总波形阻抗 Z7	[W12_RMS]/[W13_RMS]		С				6	最小值	MIN	
	电压三相不平衡度Eu1	([W10_MAX]-[W10_MIN])/[7	总谐波失真	THD	
	电压三相不平衡度Eu2	([W12_MAX]-[W12_MIN])/[V		(%	函数	8	频率	F	
	电流三相不平衡度Ei1	([W11_MAX]-[W11_MIN])/[V						9	相位	PHASE	
	电流三相不平衡度Ei2	([W13_MAX]-[W13_MIN])/[V		逻辑运算	位运算		=	10	采样周期	SAMPLECYC	LE
	能耗W1(kWh)	IntegrateRec([W14_SAMPLE									
	能耗W2(kWh)	IntegrateRec([W15_SAMPLE									确定
	#54514/2 (L14/L)		Ľ								

图 11 自定义特征值

新建特征值:点击"^{新社}"按钮后,在参数设置栏目下,选择要进行运算的特征值(通 道号和特征值属性选择),双击选取,然后通过左边的数字键盘、四则运算符、函数等功能 键,完成算法的编辑,编辑的公式出现在"表达式内容"框内,算式编辑完成后,点击确定按 钮,输入表达式名称和单位,即可在左边的自定义特征值列表看到新建的特征值。

修改特征值:在自定义特征值的列表中,双击需要修改的特征值,在右侧表达式内容框内,

AnyViewPlus 通用数据采集软件用户手册

出现当前特征值的算法表达式,用户可进行修改,点击" 2000 "按钮,更新表达式内容。

删除特征值:在自定义特征值列表中,双击需要删除的自定义特征值,点击" 题》"按钮,即可删除该特征值及其表达式。

下表 2 对自定义特征值调用的相关函数进行说明,其中[num]为用户选定的任意通道的特征值。

函数名	功能	调用形式
E	常用指数	2.7182818
PI	圆周率	3.1415926
Abs	取绝对值	Abs([num])
Acos	反余弦函数	Acos([num])
Asin	反正弦函数	Asin([num])
Atan	反正切函数	Atan([num])
Ceiling	向上舍入(取整)	Ceiling([num])
Cos	余弦函数	Cos([num])
Exp	指数函数	Exp([num])
Floor	向上舍入(取整)	Floor([num])
IEEERemainder	余数计算	IEEERemainder([num], [num])
Log	对数函数	Log([num] , [num])
Log10	常用对数函数	Log10([num])
Max	求最大值	Max([num], [num])
Min	求最小值	Min([num] , [num])
Pow	幂函数	Pow([num] , [num])
Round	四舍五入	Round ([num] , [num])
Sign	符号函数	Sign([num])
Sin	正弦函数	Sin([num])
Sqrt	开方函数	Sqrt([num])
Tan	正切函数	Tan([num])
Truncate	截断函数	Truncate([num])
Integrate	积分函数	Integrate(0,[t],[f(x)])
IntegrateRec	定积分函数	IntegrateRec([t],[f(x)])
Differentiate	微分函数	Differentiate([t],[f(x)])

表 2: 函数类调用说明

4.4. 系统状态显示

系统状态显示可实现设备运行过程中,软件进行同步监控,使用户通过可视化方式迅速掌握当前设备的运行状态及系统状态,包含设备连接状态、内存占用率、CPU使用率、存储器 占用率(数据存储盘)、网络流量等信息。系统状态显示如下图 12 所示:

图 12 系统状态显示

4.5. 仪表显示

仪表显示界面的功能为软件以虚拟仪表盘的形式显示特征值数据,用户通过配置多个单特征值仪表,快速建立客户应用。每个标签页可显示 64 个仪表盘,对于多特征值的应用场合,可通过增加标签页面的方式扩展仪表盘显示数量,标签页数量最多为5页。仪表显示界面如下图 13 所示:

🏟 通用数	据采集系统																	-
4			实时》	シ 成形		道势曲线	ŧ	F		ѷ析	3						开始采	•) 集
第一页 💌 🚺	0																	
^{通道0} 0.21	но1 ▼ 1 791 mA	通道4 0.8	▼ AVG 32493	▼ mA	_{通道6} ▼ 0.3972	avg ▼ 21 mA	^{通道8} 18.	▼ ^{AVG} 6472	▼ i mA	^{≞≝2} ▼ 21.273	avg ▼ <mark>6</mark> mA	_{通道6} 18.6	AVG 472 m	A 通道	9 • •	wg ▼ mA	通道10 ▼ 6.986	avg ▼ 614 mA
_{通道5} 0.84	но1 ▼ 686 mA	通道5 0.8	▼ AVG 34684	▼ mA	_{通道3} ▼ 42.629	AVG ▼ 7 mA	^{通道3} 42.	▼ _{AVG} 6297	▼ i mA	^{≝≝0} ▼ −2.504	MIN ▼ 2 A	^{通道8} 1.05	мах 1 5 371 А	通道	₄ ▼ № 2.2547	//IN ▼ 7 A	_{通道0} ▼ 8134	тнр v 31 %
_{通道0} 2.51	нот v	通道0 0.7	• AVG 70286	▼ mA	^{通道4} ▼ 0.8249	AVG ▼ 3 mA	通道3 42.	• AVG 6297	▼ mA	^{≝≝0} ▼ −2.504	MIN ▼ 2 A	^{通道8} 1.05	мах 1 371 А	通道	4 - 1	AIN T	^{通道0} ▼ 8134	THD ▼ 31 %
_{通道0} 0.21	H01 ▼ 791 mA	调道4 0.8	▼ AVG 32493	▼ mA	_{通道6} ▼ 0.3972	AVG V	18.	▼ _{AVG} 6472	▼ mA	^{≝≝2} ▼ 21.273	avg ▼ 6 mA	_{通道6} 18.6	AVG 472 m	A 通道	。 ▼ ▲ 7.0579	wg 🔻	^{通道10} ▼ 6.986	avg ▼ 614 mA
通道5 0.84	H01 ▼ 686 mA	通道5 0.8	▼ AVG 34684	▼ mA	_{通道3} 、 42.629	AVG V	_{通道3} 42.	▼ _{AVG} 6297	▼ mA	^{⊪≝0} ▼ −2.504	MIN ▼ 2 A	•	添加					
																		ş
	_																-	
O 导出记录																	× ×	》 > 记录
记录时间) (父表1 譜道0/H01:	仪表2 通道0/H01:	仪表3 通道0/H01:	仪表4 通道0/H01:	仪表5 通道0/H01:	仪表6 通道0/H01:	仪表7 通道0/H01:	仪表8 通道0/H01:	仪表9 通道0/H01:	仪表10 通道0/H01:	仪表11 通道0/H01:	仪表12 通道0/H01:	仪表13 通道0/H01:	仪表14 通道0/H01:	仪表15 通道0/H01:	仪表16 通道0/H01;	仪表17 通道0/H01:	仪表18 合
1 14:41:40	0.18167 透道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 透道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:
2 14:41:40	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:	0.18167 通道0/H01:
3 14:41:40	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167 時間0/H01:
4 14:41:40	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167	0.18167 ~

图 13 仪表显示界面

4.5.1. 添加仪表

点击界面的"➡"添加按钮,增加一个仪表盘,通过仪表盘上方的下拉框,选择该仪表 盘显示特征值的通道号和特征值属性(AVG、H01、RMS、MEAN、Max、Min、THD、F、 Phase、自定义特征值)。

4.5.2. 删除仪表

右键单击要删除的仪表盘的数据显示区域,显示"删除"选项,单击删除该仪表盘。当仪表盘占满该页面时,可点击标签页左上角的"⁺"按钮,增加一个新的标签页,来扩展显示的仪表盘数量。

4.5.3. 数据记录与导出

自动记录:在保存时间间隔和保存总时长中输入相应的时间,勾选"自动保存"前的复选框,设置好文件名和存储路径后,软件将按照设置的时间间隔进行自动记录,记录时间达设置的总时长后,自动停止记录,记录数据文件格式为*.csv。

删除记录:可鼠标右键单击任意一条数据记录选择"删除"进行逐条删除,也可选择 "^{_______}"按钮,进行所有数据记录的删除。

数据导出:点击"^{导出记录}"按钮,将记录的所有数据以*.csv的文件格式保存至指定的文件夹。

4.6. 实时波形

实时波形界面用于查看各个通道的实时波形。每个标签页配置 3 个波形显示窗口,每个窗口最多可显示多个通道的实时波形曲线,显示通道之间可自由切换,用户也可通过添加页面, 扩展波形显示窗口数量。实时波形界面如下图 14 所示:

图 14 实时波形界面

4.6.1. 波形操作

- 1. 采样率信息:显示当前窗口波形的采样频率;
- 波形窗口最大化:点击"[□]"最大化按钮,可将对应的波形显示窗口最大化显示, 通过点击"[™]"按钮恢复正常的3窗口显示模式;
- Y 轴显示对象选取:点击 Y 轴的下拉框按钮,勾选波形通道号前面的复选框,选择该 波形窗口的显示对象,波形曲线显示以不同颜色进行通道间的区分;
- 特征量显示对象选取:点击特征量的下拉框按钮,勾选特征量前面的复选框,将波形相关的特征量显示于波形界面,如显示波形的 RMS 值、频率 F、最大值 MAX 等,特

征量颜色与波形颜色对应;

- X/Y 轴缩放操作:通过点击 X/Y 轴的 "→ X" 和 "→ X" 按钮,实现对
 X/Y 轴的压缩和拉伸,通过点击 "○" 按钮,软件根据默认显示时间窗长度和波形 幅值对 X/Y 轴进行自适应调节;
- 波形显示暂停与运行:点击"²"按钮,暂停数据刷新并冻结该窗口的波形曲线, 再次点击恢复运行;
- 7. 数据保存:点击"²"按钮,可保存当前波形窗口的数据至指定的文件夹内,数据文件存储格式为*.wav(注:该保存功能与通道设置界面的波形保存功能不冲突)。点击"²"按钮,将当前窗口的波形画面以*.jpg格式的文件保存至指定文件夹内。

4.7. 谐波分析

在实时波形界面点击"^{造波分析}"按钮,即可对当前波形窗口的信号进行在线谐波分析, 谐波分析结果以柱状图和列表的形式展示,最多同时可进行3个通道的实时谐波分析。谐波分 析目前主要以快速傅里叶算法方式实现。FFT处理选取输入信号数据后,根据需求设置FFT 计算参数如加窗函数类型、分析点数等,执行FFT算法获得频域数据,FFT分析有幅值谱Peak、 幅值谱 RMS、百分比三种形式的输出。谐波分析界面如下图 15 所示:

图 15 谐波分析界面

4.7.1. 选择分析对象

谐波分析界面下,单击选中相应通道号,即选取当前通道的信号为分析对象。

4.7.2. 设置分析点数

根据波形通道数据的采样率和基波频率,确定谐波分析的点数,为减小频谱泄漏,软件自

动截取信号基波周期整数倍的采样点(至少为一个基波周期采样点)进行快速傅里叶变换。

4.7.3. 窗函数类型

软件提供几种常规的窗函数供选择,包含矩形窗、汉宁窗、平顶窗等,用户根据实际分析 需求,选择合适的窗函数类型对分析数据进行加窗处理。

4.7.4. 幅值类型

可选择显示频谱图的幅值类型,提供有效值和峰值两种显示方式,也可将显示方式切换为 百分比显示,在该模式下,软件将信号的基波值进行归一化处理,显示各次谐波占基波的百分 比。

4.7.5. 覆**盖率**

加窗函数的覆盖率,提供 50%和 75%两种覆盖率供选择。

4.7.6. 柱状图显示

将谐波分析的结果以柱状图的形式展示,显示分析频段范围内所含各次谐波的频率和幅值 信息。

4.7.7. 列表显示及导出

用户可手动输入谐波分析的基波频率(默认按实际信号的基波频率)和谐波分析次数,最 高分析频率至100kHz,软件以列表的形式展示各次谐波的次数、幅值和相位等参数。

软件还可计算和显示两个相关参量(同相U和I)各次谐波的阻抗和阻抗角,其中谐波阻

抗|Z|=U (h0x) /I(h0x), 阻抗角=ΦU(h0x)-ΦI(h0x), 其中 h0x 为第 x 次谐波。

用户还可通过"导出"按钮,将当前信号的谐波分析结果以.csv格式导出至目标文件夹。

4.7.8. 相关参量的计算

软件根据 IEC 和相关国家标准规定的算法,对谐波相关的参量进行计算并实时显示,包 含总谐波失真 THD、谐波含量 HC、电话谐波因数、奇次/偶次谐波含量等,相关算法如下:

17

总谐波失真:THD= $\frac{\sqrt{X^2_{rms}-X^2_{h00}-X^2_{h01}}}{X_{h01}}$ (X 表示电压或电流 , h00 表示直流分量 , h01 表

示基波有效值);

波形畸变率:K(%)=
$$\frac{\sqrt{X^2 rms - X^2 hoo - X^2 hoo}}{X_{hoo}}$$
·100(X表示电压或电流,h00表示直流分量,

h01 表示基波有效值)

基波有效值);

电话谐波因数:THF= $\frac{\sqrt{\sum_{n=1}^{99} (X_{hn} \cdot \lambda n)^2}}{X_{rms}}$ (λn :频率加权系数,由插值法获取)。

4.8. 趋势曲线

趋势曲线界面用于显示各特征值的趋势曲线(稳态值),可选择任意1个或多个通道的特征值数据(每个通道的9个基本特征值及自定义特征值)显示于界面,由于X轴和Y轴都可 由用户自定义,其中Y轴可复选,因此通过X和Y轴不同属性的组合方式,可实现单个或多 个特征值的时域显示(Y/t图)及两个特征值的二维显示(XY图)等功能,趋势曲线界面如下 16 所示:

图 16 趋势曲线显示界面

4.8.1. 窗口大小

趋势曲线显示界面具备三种显示模式:全界面、1/2 界面和 1/3 界面,表征单个曲线显示 窗口占整个界面的比例,用户根据显示需要可在三种模式中自由切换。

4.8.2. 背景颜色

提供多种显示窗口的背景颜色供用户选择,"背景颜色"后的色块指示当前使用的背景色,

点击"背景颜色"按钮进行背景色的切换。

4.8.3. 全屏保存

点击"全屏保存"按钮,软件会将当前所有显示窗口的趋势曲线图以*.jpg 格式的文件保

存至目标文件夹(保存路径在通道设置中已设定)。

4.8.4. 显示对象选择

趋势曲线显示窗口右侧显示对应的功能按键,如图17所示:

			-Fr	2	清屏	1	游标	累积	平移	*
	—— 电流0-0:AVG		X轴: 时间 - ·							
	● 电流0-0:AVG				通道号		特	征值	显示出	例
	—— 电流0-0:AVG		1	电	1流0-0	•	AVG	Ŧ	1.00)C ►
	—— 电流0-0:AVG		2	电流0-0 -		AVG -		4 1.000 ▶		
			з	甩	1流0-0	-	AVG	-	∮ 1.00)C ►
			4	电	1流0-0	-	AVG	~	1.00)C ►
			5	甩	1流0-0	Ŧ	AVG	Ŧ	1.00)C ►
				删除			添	添加		
4		5	Y	自民	力 -120)		8	30	

图 17 趋势曲线功能按键

- 自定义 X 轴属性:通过 X 轴对应的通道号和特征值下拉框,编辑当前趋势曲线显示窗口的 X 轴属性,可选择任一通道的任一特征值作为 X 轴的属性(包含自定义特征值), 软件默认状态下的 X 轴属性为时间。
- 自定义Y轴属性:点击"^{添加}"按钮添加显示对象,一个窗口最多可添加6条趋势 曲线。通过"通道号"和"特征值"的下拉框选项,选择要显示特征值的通道号和特

征值属性(包含自定义特征值)。选定一条趋势曲线,点击"^{删除}"按钮,删除该信 号的趋势曲线显示。

3. Y轴缩放调节:通过"显示比例"设置当前信号的Y轴放大系数,以兼容不同幅值的信号同屏显示。用户也可手动编辑Y轴坐标显示的上限或下限值,在默认状态下,Y 轴坐标值为自适应(以最大幅值的信号为准),点击"Y自动"按钮,切换至手动调节 状态"Y手动",在此状态下用户可编辑Y轴坐标的上限和下限值。

4.8.5. 显示窗口操作

- 基本操作:点击"¹" 按钮,暂停数据刷新并冻结该窗口的趋势曲线,再次点击恢复运行;点击"¹" 按钮,清空当前窗口显示的所有曲线,时间坐标轴归零;点击"¹" 按钮,调出游标(最多2个),可计算两个选定点的 X 值、Y 值、△X 值及△Y 值,便于用户对曲线进行精准定位和详细分析;点击"¹" 按钮,将当前窗口的趋势曲线图以*.jpg 格式的文件保存至目标文件夹内。
- 显示方式:软件提供两种曲线显示方式,即累积显示和平移显示。累积显示是将记录 过程中的所有数据曲线全部显示于当前窗口,平移显示是指每次只更新固定时间长度 的数据曲线,软件默认时长为 60s。点击"^{累积}"或"^{平移}"按钮,进行两种显 示方式的切换。

4.9. 电源质量分析

电源质量分析界面用于对用户关注的参量进行三相矢量分析,绘制矢量关系图,并参照行业标准完成电能质量分析及相关参数的计算。

电源质量分析界面的每个标签页可显示 4 个分析窗口,每个窗口可对 2~6 个信号进行分析,用户也可通过添加标签页的方式增加分析窗口数量。电源质量分析界面如下图 18 所示:

图 18 电源质量分析界面

4.9.1. 分析窗口名称

通过名称输入栏,用户可自定义当前分析窗口的名称,软件默认名称为"电源质量分析

1~4"。

4.9.2. 分析对象选择

通过下拉框选择待分析信号的通道号,每个分析窗口可选择最多6个分析对象。

4.9.3. 数据保存

点击 " ¹ 按钮 , 可将当前分析窗口的分析结果 (包含矢量关系图、分析对象和计算参量) 以*.jpg 格式的文件存储至目标文件夹内。

4.9.4. 三相矢量图

描述三相电流/电压之间的相位关系图,准确的反映信号之间的向量关系,多个通道的矢 量图以不同的颜色进行区分。

4.9.5. 相关计算参量

根据行业标准,实时计算并显示的参量包含:三相不平衡度、正序分量和负序分量,相关 计算算法如下:

电压相间不平衡度:Eu=(Umax-Umin)/Uavg(注:Uavg=(U1+U2+U3)/3)

电流相间不平衡度:Ei=(Imax-Imin)/Iavg(注:Iavg=(I1+I2+I3)/3)

(注:算式中Ua、Ub、Uc、Ia、Ib、Ic 取基波有效值)

4.10. 数据回放

数据回放用于对已保存的数据文件进行回放和离线分析,通过回放功能,可完美再现全部测试过程,便于事后分析。也可将存储的波形设为参考波形,方便进行对比。

软件可导入的文件格式包含实时波形*.wav 文件、趋势曲线.ftc 文件、.csv 文件或.mat 文件, 最多可同时对 6 个数据文件进行回放分析。

数据回放界面如下图 19 所示:

图 19 数据回放界面

4.10.1. 导入数据
 点击 "^{文件导入}"按钮,选择目标文件(文件格式可以为*.wave、*.ftc、.csv 或.mat 等)
 进行数据导入,导入成功后界面显示波形概览图和对应的实时波形曲线。

导入时,根据存储文件方式,可选择多条曲线显示于同一坐标系,也可选择单独坐标显示。

4.10.2. **导出数据** 可通过点击"导出…"按钮,将两条游标之间的波形文件,导出至指定文件夹,导出文件

格式可选*.csv 和*.mat。

4.10.4. 波形控制

通过"▶"、"▶"、"▶"和"▶"和"▲"四个按钮,实现对波形文件的播放、停止、快进 和快退操作,其中快进和快退步幅可进行调整。也可通过拖拽进度块的方式,快速定位至指定 点附近的波形。

通过鼠标选定 X 轴或 Y 轴,配合滚轮实现对 X/Y 轴的压缩和拉伸操作,如未选定 X 轴或 Y 轴,则软件会以选定窗口波形的 X 和 Y 轴进行同比例缩放。通过点击" ³"按钮,软件根据默认显示时间窗长度和波形幅值对 X/Y 轴进行自适应调节,选择最佳显示视角。

4.10.5. 波形游标

点击"^{波形游振}"按钮,即可在波形界面调出游标,最多同时调出 2 支游标,用于对波形的精确定位与分析。

软件同时提供波形的游标计算功能,提供游标定位波形的 X 值、Y 值、ΔX 值、ΔY 值显示,两支游标之间所有通道波形的最大值(Max)最小值(Min)峰峰值(P-P)校准平均值(MEAN)方均根值(RMS)信号频率(Freq)周期(Period)周期数(Cycles)的实时运算与显示。

4.10.6. 数字滤波器

软件可对导入的波形文件进行数字滤波处理,提供三种不同类型的常用数字滤波器:巴特 沃斯、切比雪夫、贝塞尔滤波器,每种类型都有低通(LP)、高通(HP)、带通(BP)和带阻 (BS)启用。用户可根据待分析信号特点,选择合适的滤波器。用户设定滤波器类型后,再 对滤波阶数、频率上/下限等参数进行设置,当滤波器所有参数设置完毕后,对应通道的波形 立即更新为滤波后的波形。

5. 质保与售后服务条款

5.1. 产品保修

银河电气产品保修期自出厂验收合格之日起计算,产品保修12个月,保修期内可免费修 理及更换故障零配件。但以下情况不属于保修范围:

- 安装、调试完毕,将相关资料(说明书、安装手册等)全部交付使用后,因使用单位不 按使用说明书操作、维护、保养造成的损坏;
- 2. 因使用单位或非银河电气授权服务单位移动、拆卸及维修造成的损坏;
- 3. 因不可抗拒的自然灾害或使用环境恶劣造成损坏的;
- 4. 已超过保修期的产品;
- 5. 其间设备、产品按使用要求正常使用发生的故障,由我公司负责解决,所需费用均由 我公司负责。

5.2. 保修期后的服务承诺

产品保修期后,由营销中心与用户协商签定《银河电气产品维修保养合同》,为用户提供 保修期后产品的售后服务,并根据合同规定定期对产品进行预防性的检修保养。

如有零件需要修复和更换,我公司将严格按照公司规定的维修费收费标准及配件收费标准收费。

5.3. 售后服务

- 1. 售后服务全国免费服务电话:400-673-1028;
- 2. 售后服务范围:
 - 根据用户要求派安装指导人员现场指导安装;
 - 产品开机检测和软件调试;
 - 质保期内的产品维修;
 - 质保期外的产品维修;
 - 对客户关于产品所有问题的技术支持。

5.4. 响应时间

1. 湖南省内客户(服务半径在 100km 以内的), 应在 24 小时内到达现场处理;

省外客户(服务半径超出 100km 的), 或需要与配套厂家联系的, 应在 12 小时内给
 予用户答复, 48 小时内到达现场处理。

5.5. 售后服务收费标准

严格执行国家和地方的维修服务收费价格标准,与用户协商满意后进行收费服务。 对于无国家和地方相关法规的,将严格执行银河电气规定的收费标准。

地址:湖南省长沙市经济技术开发区开元路 17 号湘商世纪鑫城 43 楼 邮编: 410073 前台: 0731-8839 2988 传真: 0731-8839 2900 商务: 0731-8839 2955 技术咨询: 0731-8839 2611 售后服务: 0731-8839 2988-218 网址: www.vfe.ac.cn

